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We calculate the conductance through rings with few sites L described by the t-J model, threaded by a
magnetic flux � and weakly coupled to conducting leads at two arbitrary sites. The model can describe a
circular array of quantum dots with large charging energy U in comparison with the nearest-neighbor hopping
t. We determine analytically the particular values of � for which a depression of the transmittance is expected
as a consequence of spin-charge separation. We show numerically that the equilibrium conductance at zero
temperature is depressed at those particular values of � for most systems, in particular at half filling, which
might be easier to realize experimentally.
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I. INTRODUCTION

Recent advances in nanotechnology allow the fabrication
of different nanostructures, motivated either by technological
interest or the possibility of testing theories for strongly cor-
related electrons. One example is the realization of the
Kondo effect in systems with one quantum dot �QD�.1–4 An-
other one is a study of the metal-insulator transition in a
chain of 15 QD’s.5 Systems of a few QD’s have been pro-
posed theoretically as realizations of the two-channel Kondo
model,6,7 the so-called ionic Hubbard model,8 and the double
exchange mechanism.9 Recently it has been studied how the
Kondo resonance splits in two in a system of two QD’s, one
of them noninteracting.10,11

It is known that strong correlation effects invalidate the
conventional quasiparticle description of Fermi liquids and
in one dimension lead to a fractionalization of the electronic
excitations into pure charge and spin modes as it has been
shown using bosonization.12–16 In this field theory, it be-
comes clear that in general �except in some particular
models17� the Hamiltonian at low energies can be separated
into independent charge and spin parts. While this separation
is an asymptotic low-energy property in an infinite chain,
exact Bethe ansatz results for the Hubbard model in the limit
of infinite Coulomb repulsion U have shown that the wave
function factorizes into a charge part and a spin part for any
size of the system.18

Several experiments were reported that find indirect evi-
dences of spin-charge separation,19–23 and it could also be
potentially observed16 in systems such as cuprate chains and
ladder compounds24 and carbon nanotubes.25 From the theo-
retical point of view, several calculations involving rings
have been made. The real-time evolution of electronic wave
packets in Hubbard rings has shown a splitting in the disper-
sion of the spin and charge densities as a consequence of the
different charge and spin velocities.26,27 Pseudospin-charge
separation has also been studied theoretically in quasi-one-
dimensional quantum gases of fermionic atoms.28,29

The transmittance through Aharonov-Bohm rings of
length L modeled by a Tomonaga-Luttinger liquid and con-
nected to conducting leads at 0 and L /2 has been studied by
analytical methods.30,31 It is found that the transmittance in-
tegrated over an energy window shows dips when the

threaded magnetic flux � corresponds to particular fractional
values of the flux quantum �0=hc /e. This is rather striking
because in the noninteracting case, one has a dip in the trans-
mittance only when the applied flux �=�0 /2, for which the
conductance vanishes due to a negative interference of the
waves traveling through both arms of the interferometer.
Jagla and Balseiro30 obtained that the values of the flux at the
dips are multiples of �0vs /vc, where vc �vs� is the charge
�spin� velocity, when vs /vc is a simple fraction. This allows
an appealing simple “classical” interpretation of the phenom-
enon: the electrons enter the ring at position 0, splitting into
charge and spin components, which travel independently in-
side the ring, until they recombine at L /2 before leaving the
ring. When the difference between the Aharonov-Bohm
phases captured by the charges traveling in both possible
senses of rotation is an odd multiple of �, the transmittance
is depressed. A more recent work, however, indicates that the
relevant ratio for the dips is in general vs /vJ, where vJ is the
current velocity.31

Numerical calculations of the transmittance through finite
rings described by the t-J model, integrated over an energy
window also show clear dips for fractional applied fluxes.32

This model is expected to be a realistic description for a ring
of quantum dots if the charging energy U is large in com-
parison with the nearest-neighbor hopping t. Recently we
have discussed the extension of these results to ladders of
two legs as a first step to higher dimensions.33

All the above calculations used a formalism valid at equi-
librium and zero temperature and an integration over a finite
energy window to obtain the dips. In particular in Ref. 32
this window contained all low-energy spin excitations with
the same charge quantum numbers nl �see Sec. III�. In prin-
ciple, this integration can be justified invoking a finite volt-
age bias or temperature. However, in the interacting case,
under an applied bias, it is not clear that the total current
through the device can be obtained by integrating the equi-
librium transmittance. In particular, it might happen that a
particle injected to the ring leaves it in an excited spin state
after leaving it. This process is not taken into account in the
calculations. The effect of temperatures of the order of the
spin excitation energy is also difficult to predict. These short-
comings raise the question of whether the dips can be really
observed in an experimental setup.
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In this work, we analyze the origin of the dips in the
transmittance as a function of applied flux in finite rings
described by a strongly correlated model and, in particular,
the t-J model. We discuss the conditions for which the inten-
sity of the first peak in the equilibrium conductance at zero
temperature as a function of the gate voltage has a flux de-
pendence with characteristic dips as a consequence of spin-
charge separation.

In Sec. II we present the model, the formalism used to
calculate the conductance, and some general statements on
the conditions for which dips or reduced conductances are
expected. In Sec. III we discuss the model with J=0 �equiva-
lent to the Hubbard model with infinite U�, for which definite
conclusions can be drawn on the basis of its exactly known
energy spectrum. Section IV contains numerical results for
some particular systems at which dips in the conductance at
certain fluxes are expected at equilibrium and small tempera-
tures. Section V is the summary and discussion.

II. MODEL AND RELEVANT EQUATIONS

A. Hamiltonian

We consider a ring of L sites weakly connected to nonin-
teracting leads at sites 0 and M �Fig. 1�. Usually M =L /2 was
taken,30–32 but we will see that L odd and/or M �L /2 lead to
interesting new results.

The Hamiltonian can be written as

H = Hring + Hleads + Hlinks. �1�

The first term describes the isolated ring, with on-site energy
modified by a gate voltage Vg and hoppings modified by the
phase exp�i� /L� due to the circulation of the vector poten-
tial. For most of the results of this paper we use the t-J
model to describe the ring,

Hring = − eVg�
i�

ci�
† ci� − t�ci+1�

† ci�ei�/L + H.c.�

+ J�
i
�Si · Si+1 −

1

4
� , �2�

where �=2�� /�0 and Si is the spin operator at site i. More-
over double occupancy is not allowed at any site of the ring.
The second term corresponds to two tight-binding semi-
infinite chains for the left and right leads;

Hleads = − t �
i=−�,�

−1

ai−1,�
† ai,� − t �

i=1,�

�

ai,�
† ai+1,� + H.c. �3�

The third term in Eq. �1� describes the coupling of the left
�right� lead with site 0 �M� of the ring,

Hlinks = − t��
�

�a−1,�
† c0� + a1,�

† cM� + H.c.� . �4�

B. Conductance

To calculate the conductance through the ring, one needs,
in principle, to know some Green’s functions of the complete
system.34,35 However, when the ground state of the isolated
ring is nondegenerate and the coupling t� between the leads
and ring is weak, the equilibrium conductance at zero tem-
perature can be expressed to second order in t� in terms of
the retarded Green’s function for the isolated ring between
sites i and j: Gi,j

R ���.8,30 For an incident particle with energy
�=−2t cos k and momentum �k, the transmittance reads

T��,Vg,�� =
4t2 sin2 k�t̃����2

��� − ���� + teik�2 − �t̃2�����2
, �5�

where

���� = t�2G00
R ���, t̃��� = t�2G0M

R ��� �6�

play the role of a correction to the on-site energy at the
extremes of the leads and an effective hopping between
them, respectively.

Although derived from perturbation theory, this equation
is in fact exact for a noninteracting system. However, in
general, for an odd number of electrons, the ground state of
the isolated ring is Kramers degenerate for a system with
time-reversal symmetry and the equation ceases to be valid,
missing the physics of the ensuing �nonperturbative� Kondo
effect in which the electrons of the leads screen the spin of
the ring.8,36 Nevertheless, the characteristic energy of this
Kondo effect decreases exponentially with decreasing t�, and
therefore for small enough t� the Kondo effect is destroyed
by a Zeeman term or temperature small in comparison with
the other energy scales in the problem. Here, we assume this
situation. The effect of a Zeeman term on the conductance in
the Kondo regime has been explicitly shown, mapping the
problem to an effective Anderson model and solving it by
nonperturbative methods.8 In addition, the main conclusions
of this work are of qualitative nature and are not affected by
the accuracy of Eq. �5�.

The conductance is G= �ne2 /h�T�	 ,Vg ,��, where n=1 or
2 depending if the spin degeneracy is broken or not,8 and 	
is the Fermi level, which we set as zero �half-filled leads�. As
the gate voltage Vg is varied a peak in the conductance is
obtained when there is a degeneracy in the ground state of
the ring for two consecutive number of particles: Eg�N+1�
=Eg�N�, where Eg�N� is the ground-state energy of Hring with
N electrons. To simplify the discussion and without loss of
generality, we assume that we start with N+1 electrons in the
ring and apply a negative gate voltage in such a way that a
peak in the conductance is obtained at a critical value Vg

c

when the number of electrons in the ring changes from N
+1 to N electrons. Note that Eq. �5� formally gives more
peaks in the transmittance when at several values of Vg
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FIG. 1. Scheme of the systems studied numerically. �a� L=6 and
�b� 7. In both cases M =3.
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Vg
c excited states �e	 of N electrons are reached �Ee�N�

=Eg�N+1��. However these peaks are in principle not ex-
perimentally accessible since the ground state has less than
N+1 particles for Vg
Vg

c. In any case, the information on
the excited states of N electrons is relevant to explain not
only the position of the dips as a function of flux � in the
integrated transmittance30–32 but also the values of the flux at
which particular reductions in the intensity of the observable
first peak in the conductance are obtained.

C. Dips in the conductance

The values of the flux �d for which dips or reduced con-
ductances are expected correspond to some particular cross-
ings of the energy levels of N electrons. Far from these
crossings and to leading order in t�, the transmittance as a
function of gate voltage Vg has a Lorentzian shape reaching
the maximum value �T=1� for Vg such that Ee�N�=Eg�N
+1� �where the subscript e refers to any state in the subspace
of N electrons� and half-width at half maximum,

we =
2�t��2

t
�
e�c0��g	�2, �7�

where �g	 is the ground state in the subspace of N+1 elec-
trons assumed nondegenerated.8 This assumption is always
true in the presence of a small Zeeman magnetic field except
at particular values of the flux that do not correspond to �d,
which are not relevant for the present analysis.

Keeping this assumption, some conclusions can be drawn
for the general case using symmetry arguments. Using the
Lehman’s representation, the part of the Green’s function
G0j

R ��� that enters the transmittance �Eq. �6�� when a particle
is destroyed is

G0j
R ��� = �

e


g�cj�
† �e	
e�c0��g	

� + Ee − Eg
. �8�

Since the ring is invariant under rotations R that map each
site to its consecutive one Rcj�

† R†=cj+1�
† , the eigenstates of

Hring are also eigenstates of R. Denoting K� as the wave
vector of the state ��	, one has R��	=exp�iK����	, and there-
fore 
g�cj�

† �e	=exp�ij�Kg−Ke��
g�c0�
† �e	. Replacing in the

above equation one obtains

G0j
R ��� = �

e

e−ij�Ke−Kg��
e�c0��g	�2

� + Ee − Eg
. �9�

At the values of the flux for which two states of N elec-
trons �e	 and �e�	 are degenerate, assuming that the corre-
sponding matrix elements entering Eq. �9� are nonzero,
clearly only these two states �which correspond to the domi-
nant poles of G0j

R ���� contribute significantly to the Green’s
function at the Fermi energy ��=	=0� when Vg �which dis-
places all Ee rigidly with respect to Eg� is tuned in such a
way that Ee=Ee��Eg. Replacing Eq. �9� with only these two
leading terms in Eqs. �5� and �6� one has an analytical ex-
pression for T�	 ,Vg ,�� in terms of two matrix elements,
proportional to we and we� �Eq. �7�� and a relative phase �
=exp�iM�Ke�−Ke�� between them in G0M

R ��� �Eq. �9��. It is

easy to see that if �=1, the transmittance for Ee=Ee� has the
same form for a nondegenerate state but with a width we
+we� equal to the sum of the individual ones. In this case,
nothing dramatic happens. In particular the integrated trans-
mittance in a window which includes those levels as a func-
tion of flux does not change at the crossing between Ee and
Ee�.

If, however, ��1, G0M
R ��� and thus the transmittance,

which is proportional to �G0M
R ����2 �Eqs. �5� and �6�� are

reduced near the crossing. This effect is more noticeable if
�=−1 and we=we�. In any case, if ��1, the above-
mentioned analytical expression vanishes at the crossing
point and the transmittance as a function of gate voltage
shows a peak with a dip inside �Fig. 4�.

Note that these results are independent of the particular
model used. In particular if the conductance through a ring
with N�=N+1 electrons is measured, with leads connected
near 180° �M =L /2� and the ground state for N��1 electrons
has a level crossing involving two wave vectors differing in
2n� /L with n odd for a given flux, then the conductance
shows a dip at that flux.

III. ANALYTICAL RESULTS FOR J=0

The general results described above can be made more
explicit for J=0. In this case, the model is equivalent to the
Hubbard model with infinite on-site repulsion U, for which
the wave function can be factorized into a spin part and a
charge part.18,32,37 Therefore, spin-charge separation becomes
apparent. For each spin state, the system can be mapped into
a spinless model with an effective flux which depends on the
total spin. While the analysis given below can be made using
the Bethe ansatz formalism,18 here we follow the elegant
method of Caspers and Ilske.37 For a system of N particles
one can construct spin-wave functions which transform un-
der the irreducible representations of the group CN of cyclic
permutations of the N spins of the L-site system. Each of
these representations is labeled by a “spin” wave vector ks
=2�ns /N, where the integer ns characterizes the spin-wave
function. The total energy and momentum �in an appropriate
gauge� of any state of the ring have simple expressions:

E = − 2t�
l=1

N

cos�kl�, kl =
2�nl + �eff

L
, �10�

K = � kl = �2��nc + ns� + N��/L , �11�

�eff = � + ks = � +
2�

N
ns, �12�

where the integers nl characterize the charge part of the wave
function and nc=�nl.

The calculation of the Green’s functions becomes very
involved due to difficulties in handling the wave functions.
However, even without calculating the matrix elements en-
tering Eq. �9�, we can predict the positions of dips in the
transmittance from a knowledge of the energies and mo-
menta of the eigenstates.
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First let us analyze the level crossings for L even and M
=L /2 �the most studied case30–32� with N odd. We recall the
reader that we start with a system with N+1 electrons and
create a hole, leading to an intermediate state with N elec-
trons. The energy levels for the case with L=4 and N=3 are
shown in Fig. 2. In the subspace with N electrons, the ground
state �0	 �with energy E0���� for ns=�=0 has occupied mo-
menta kl=2�nl /L, with consecutive nl=−�N−1� /2, 1− �N
−1� /2, . . ., �N−1� /2, and therefore nc=0. As the flux in-
creases to 2�, this state evolves to state �1	, in which nl
=−�N−1� /2 is replaced by �N+1� /2 with nc=N. Therefore
we can write E1�0�=E0�2��. The lower “charge band” �used
usually to integrate the transmittance32� extends between
E0�0� and E0�2��. Clearly from Eq. �10� E0�−��=E0��� and
a state �−1	 exists with all kl opposite to those of �1	. In the
enlarged interval −2��2�, the ground-state energy is
reached for E1�−2��=E0�0�=E−1�2�� when ns=0 �full lines
in Fig. 2�. Now keeping the same charge quantum numbers
as �0	 but allowing spin states with ns�0, new eigenfunc-
tions appear, whose energies and momenta are given by
E0

ns���=E0��+2�ns /N� and K= �2�ns+N�� /L. These states
reach the ground-state energy at �=−2�ns /N �dashed and
dotted lines in Fig. 2�.38 The crossings of energy levels at
low energies take place at intermediate points between any
two of these minima �=−��ns+ns�� /N. When ns+ns� is odd
�even� the relative phase �=exp�iL�Ke�−Ke� /2�=exp�i�ns�
−ns��=−1 �1�, and there is �there is not� a dip in the inte-
grated transmittance. Therefore, the positions of the dips are
located at

�d = ��2n + 1�/N , �13�

with n integer. These are also the positions where crossings
in the �experimentally accessible� ground state for N par-
ticles take place �ns�−ns= �1, see Fig. 2�.38

The same expression is valid for N even; but in this case
for ns=0, the minimum energy lies at �=�, E0�2�−��
=E0���, and the crossings occur when �=�−��ns+ns�� /N.
Performing the sums in Eqs. �10� and �11� using the quantum
numbers that lead to the minimum energy, as explained
above, analytical expressions are obtained for the ground-

state energy and momentum as a function of flux for L sites
and N particles, Eg�L ,N ,�� and Kg�L ,N ,��. Defining

�̃ = � for odd N ,

�̃ = � − � for even N , �14�

and writing �̃ in the form

�̃ = nint�N�̃

2�
2�

N
+ �̃r, �15�

where nint �x� denotes the nearest integer to x, one obtains

Eg�L,N,�� = − 2t
sin�N�/L�cos��̃r/L�

sin��/L�
, �16�

Kg�L,N,�� = N�̃/L . �17�

For odd N, the transmittance vanishes at �=� due to the
reflection symmetry of the system.32 This argument does not
work for even N because the ground state of Hring has orbital
degeneracy for N+1 electrons at �=�. It cannot be applied
either for M �L /2 �where the reflection symmetry is lost8� or
if the model includes hopping at large distances �as in Ref.
31�.

If the ring is connected to the leads at a distance M
�L /2, the dips at �d are less intense because ��−1 if ns
+ns� is odd. However, also ��1 if ns+ns� is even and there-
fore, new dips appear at the remaining crossings,

�d� = 2�n/N , �18�

with n integer.
The same arguments can be repeated for states with other

charge quantum numbers lying at higher energies. These re-
sults have been verified numerically and generalize those ob-
tained previously for L even, M =L /2 and odd N.32 In par-
ticular, the total integrated transmittance for a half-filled ring
with L=4 �so N=L−1=3� is shown in Fig. 3 for two posi-
tions of the drain lead, at M =1 �90° configuration� and M
=L /2 �180°�.

Some particular crossings satisfying Eq. �13� do not lead
to dips because one of the matrix elements of Eq. �9� van-
ishes as a consequence of selection rules related with the
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Φ/π
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e

FIG. 2. �Color online� Energy levels for a system of four sites
and three electrons for J=0. Solid lines correspond to the spin
quantum number ns=0, dashed lines to ns=−2, and dotted lines to
ns=−1. The different colors indicate different charge configurations.
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FIG. 3. �Color online� Total integral of the transmittance for a
system of L=4 sites and N+1=4 electrons for J=0.01, t�=0.3t, and
two positions of the leads at M.
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total spin. For example, for the system of Fig. 3 the ground
state with four electrons is a singlet, and one of the states
with lowest energy for N=3 that cross at �d�� is a spin
quartet which cannot be accessed by destroying an electron
from a singlet. Therefore, in this system, no depression of the
conductance can be observed at equilibrium, at zero tempera-
ture �for which only the ground state for any number of
particles is accessible�, and at fluxes different from half a
flux quantum ��d=��. At this flux a depression of the con-
ductance is already expected for a noninteracting system.
However, this is not the general case, and with increasing
number of particles, states of low total spin are part of the
ground state for any flux. Already for five particles, the 32
spin-wave functions can be classified as one sextuplet with
ns=0, one quadruplet for each of the four ns�0 and five
doublets �one for each of the five nonequivalent ns�. Addition
of J, in general favors the lowest total spin �some exceptions
for low J will be discussed below�.

Note that for a half-filled system, the energy is zero for
J=0 independent of the spin configuration �see Eq. �16��.
Therefore addition of an antiferromagnetic exchange favors
the lowest total spin: 0 �1/2� for an even �odd� number of
particles.

To end this section we note that the spin velocity in the
limit J→0 depends strongly on flux. It can be shown that for
large N, it is vs=vc /N2 or vs=vc /N for �eff that leads to the
minimum or maximum energy, respectively.

IV. NUMERICAL RESULTS

In this section we present numerical results for the trans-
mittance, obtained diagonalizing the ring using Davidson’s
method39 in order to obtain the Green’s functions, which
replaced in Eqs. �5� and �6�, give the transmittance. The sys-
tems studied are represented in Fig. 1. In contrast to previous
work,30–33 we concentrate on the first peak in the transmit-
tance as the gate voltage is decreased, which is experimen-
tally accessible at equilibrium and low temperatures. For
weakly coupled rings, this means that one has a system with
N+1 electrons in the ring; a hole enters it from one of the
leads, interacting with low-energy intermediate states with N
electrons before leaving the ring at the other lead, while the
ring returns to the ground state. Therefore the conductance
gives information on the low-energy eigenstates of the ring
and, as shown above for J→0, on the separation of charge
and spin degrees of freedom in a strongly interacting system.
Similar results can be obtained for increasing gate voltage. In
any case the electronic structure of the low-energy interme-
diate states is reflected.

In Fig. 4 we show the transmittance for a half-filled ring
of six sites connected with the leads at opposite sites �see
Fig. 1�a�� near a crossing of excited states with N=5 par-
ticles. The value of M =L /2=3 and the particular crossing
were chosen so that according to the previous sections, a
large negative interference is expected leading to a depressed
conductance. For J=0, the crossing occurs at �d=� /5, but
finite J displaces it to smaller values. We have chosen a finite
value of J to break the degeneracy at J=0 between eigen-
states with ns=0 with total spin S=1 /2 and 5/2 for N=5, as

discussed at the end of Sec. III. In any case, the states with
S=5 /2 do not contribute to the transmittance since they can-
not be reached, destroying an electron in the singlet ground
state for six electrons.

Near the flux �d for which two five-electron states with
S=1 /2 are degenerate, both corresponding peaks in the
transmittance merge into one, therefore only one peak is seen
for each flux �Fig. 4�. Note that far from the crossing the
width of each peak is given by Eq. �7� and increases with t�.
Near the crossing, two poles of the Green’s functions domi-
nate the transmittance as discussed in Sec. II C, and they
contribute with opposite sign to it. As a consequence a strong
depression of the conductance takes place at �d. In particu-
lar, Eqs. �5� and �6� indicate that the transmittance vanishes
at �=�d for the value of the gate voltage at which the ener-
gies of both five electron states coincide with that of the
ground state for six electrons. This might be an artifact of
these expressions which are perturbative and are not ex-
pected to be valid near this point of triple degeneracy.36

However, the physical origin of the depression of the con-
ductance is clear and should be present in a more elaborate
treatment.

To quantify in a systematic way the relative intensity of
the conductance that might be measured in an experimental
setup, we integrate the transmittance given by Eqs. �5� and
�6� in a window of gate voltage Vg of width 0.002t centered
around the degeneracy point between the ground state for
N+1 and N electrons. This corresponds to the intensity of the
first observable peak in the transmittance as the gate voltage
is lowered. The result as a function of the applied magnetic
flux for the same system of Fig. 4 is represented in Fig. 5.
The curve is symmetric under the change in sign of �, and
therefore we show only the interval 0��. For J→0 the
dips should occur at �d /�=0.2, 0.6, and 1 according to Eq.
�13�. However, near 0.6 the ground state for five electrons
changes from one of total spin S=1 /2–3 /2 and the latter is
not accessible, destroying an electron in the six-electron sin-
glet ground state. Therefore, the transmittance vanishes at the
gate voltage for which the ground state for five and six elec-
trons have the same energy if 0.6
��. As a consequence,

-2.1 -1.8 -1.5 -1.2 -0.9
eV

g
- E

g
(N+1)

0

0.2
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0.8

1

T

FIG. 4. Low-energy part of the transmittance as a function of
gate voltage for a half-filled ring of L=6 sites, J=0.03t, t�=0.3t,
and M =3 near a level crossing of the intermediate states with N
=5 particles. The crossing is at �d�0.07743� and the different
curves from left to right correspond to ��−�d� /�=−0.04, −0.02,
−0.01, 0, 0.01, 0.02, and 0.04.
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in the interval shown there is only one dip present. The po-
sition of this dip moves to lower values of � with increasing
J. As might be expected the region of magnetic flux for
which the ground state with five electrons has low total spin
�S=1 /2� increases with increasing antiferromagnetic ex-
change J.

For a given flux, if the gate voltage is decreased further
after the first peak in the transmittance is observed, the
ground state of the ring has now five electrons and the next
peak corresponds to the degeneracy of the ground states for
four and five electrons. Figure 6 illustrates this situation. For
J→0, Eq. �13� gives dips in the integrated transmittance for
�d /�=0.25 and 0.75. This agrees with the numerical calcu-
lations. The steps observed for intermediate values of J are
again due to jumps in the total spin of one of the ground
states �for four or five electrons�. In particular for � /�
�0.83 for J=0.05, the total spin of the five-electron ground
state jumps from S=1 /2 for lower values of � to S=3 /2 for
higher values of the flux.

Finally in Fig. 7 we show the results for a half-filled ring
of seven sites with M =3 �see Fig. 1�b��. For low J, the dips
are expected at �d /�=1 /6, 1/2, and 5/6 in close agreement
with the numerical results. For increasing J the dips tend to
merge into one near �=� /2. Preparing the system with an
odd number of electrons, like a half-filled system with an
odd number of sites, has the advantage that more than one
total spin is available for the intermediate states �0 and 1 in
this case� and more dips are observable.

V. SUMMARY AND DISCUSSION

We have shown for the first time that the equilibrium
conductance through finite rings described by the t-J model
threaded by a magnetic flux, weakly coupled to conducting
leads at zero temperature, shows depressions at particular
values of the flux. In general, for any strongly correlated
model, these depressions are related with level crossings of
excited states and the degree of interference depends on the
wave vectors of these excited states, as described in Sec.
II C. Previous results involved an integration over an energy
window which included several excited states, and this pro-
cedure could cast doubts on the validity of the behavior for
equilibrium conductance at zero or very low temperatures.

For the t-J model and J=0, using the exactly known en-
ergy spectrum of the isolated ring, we have determined the
conditions under which dips in the integrated transmittance
should occur for different number of particles and sites of the
ring. The position of the dips reflect the particular features of
the spectrum for J=0, in which the charge and spin degrees
of freedom are separated at all energies, and not only asymp-
totically at low energies, as expected in Luttinger
liquids.12–15

In the equilibrium conductance at zero temperature, only
the first peak in the transmittance as a function of gate volt-
age is accessible in an experimental setup. Depression of this
conductance is expected in general at certain values of the
applied magnetic flux, which are given by Eq. �13� for J=0.
The negative interference is more marked if the leads are
connected at angles near 180°. These results are confirmed
by our numerical calculations. The positions of depressed
conductance are modified as J is increased in a way which
seems difficult to predict. For moderate values of J it is not
clear for us how to relate any particular position to a specific
change in the spin quantum number. In addition, the number
of these positions seems to decrease with increasing J. This
is in qualitative agreement with expectations based on the
increase in the spin velocity,30–32 which should increase with
J. In particular, our results are valid for half-filled systems
which we believe are easier to realize experimentally. Note,
however, that due to particular selection rules explained at
the end of Sec. III, the system size L should be different than
four to observe dips in the conductance. In any case and for
any model, if the energy, wave vector, and spin of the ground
state is known when one particle is added to or removed
from the system, the position of the dips can be predicted
following the arguments of Sec. II C.
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FIG. 5. �Color online� Intensity of the first peak in the transmit-
tance as the gate voltage is lowered, Ifp, as a function of applied
magnetic flux for a ring of six sites and six electrons, M =3 �Fig.
1�a��, t�=0.3t, and several values of J. The curves with J�0.001t
are displaced vertically for the sake of clarity.
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FIG. 6. �Color online� Same as Fig. 5 for five electrons.
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FIG. 7. �Color online� Same as Fig. 5 for a ring of seven sites,
seven electrons, and M =3 �Fig. 1�b��.
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Due to selection rules related with total spin, more dips
are expected for systems with an odd number of particles.

Our numerical results were based on an expression for the
conductance first used by Jagla and Balseiro,30 which is per-
turbative in the coupling of the ring with the leads �Eqs. �5�
and �6��. This expression cannot capture nonperturbative ef-
fects, such as the Kondo physics.36 However, the physics of
the depression of the conductance is present independently
of the formalism used to calculate it. Nevertheless a more
elaborate calculation of the conductance would be desirable.
One possibility is to use numerical results for the ring to

construct an effective model for the low-energy physics in-
cluding the leads and solve the model by nonperturbative
methods. This approach has been followed in simpler
problems.8,36
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